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Abstract 

The  conventional  discrete  ordinates  approximation to the  Boltzmann 

transport  equation  can  be  described in a matrix  form.  Specifically, the 

wi th in -g roup   s ca t t e r ing   i n t eg ra l   can   be   r ep resen ted   by  three 

components:  a  moment-to-discrete  matrix, a scattering  cross-section 

matrix  and  a  discrete-to-moment  matrix.  Using  and  extending  these 

entities,  we  derive  and  summarize the matrix  representations of the 

second-order  transport  equations. 
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Discrete Ordinates Approximations to  the First- and 
Second-Order Radiation Transport Equations 

1. Introduction 

The  CEPTRE  code,  which  stands  for  Coupled  Electron-Photon  Transport 

for  Radiation  Effects, is under  development  under  the  ASCI  program at 

Sandia. It is designed  to  provide  radiation  transport  capabilities  for  the 

subsequent  mechanical  and  electrical  analysis. The major  features of the code 

include: 

multigroup  energy  discretization,' 

angular  discretization  with  discrete  ordinates  approximation  and 

with  arbitrary  order of anisotropic  scattering,' 

continuous  linear  or  quadratic  finite-element  approximations  on 

unstructured mesh,:! 

parallel  options  with  message  passing  interface, 

object-oriented  program  architecture  to  allow  ease of maintenance 

and  extension. 

Moreover, the  CEPTRE code is based  on a novel  approach in which the  space- 

angle  dependence is solved  simultaneously  by  using  the  conjugate  gradient 

m e t h ~ d . ~  This solution  technique  offers  two  advantages  over  the  conventional 

source  iteration. First, it eliminates  the  need  for  the  inner  iterations which is 

notoriously  slow  for  electron  transport.  Second, the global  system is built  and 

processed  in a distributed  fashion  which is well  suited  for  massively  parallel 

computers. 

The  objective of this report is to  document  the  mathematical  basis of the 

CEPTRE code  including  both  the first- and  second-order  formulation of the 

rad ia t ion   t ranspor t   equa t ion .   We  emphas ize   the   energy   and   angular  
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discretizations  while  the  finite  element  analyses  are  presented in a  follow-up 

report. We begin  by  discussing  the  first-order  Boltzmann  transport  equation 

in  a general   context.   The  multigroup  Legendre  expansion  to  treat   the 

scattering  cross  section  and  the  discrete  ordinants  approximation  to  treat  the 

angular  dependence  are  introduced  to  reduce  the  transport  equation  to a 

sys tem of energy-independent ,   d iscrete   equat ions.  We then   ou t l i ne  a 

procedure  to cast the  discrete  equations  into  a  matrix  form by expressing  the 

within-group  scattering  integral  with  three  components: a moment-to-discrete 

matrix, a scattering  cross-section  matrix  and  a  discrete-to-moment  matrix. 

This  matrix  representation  involves  combining  the  discrete  angular  flux  into a 

vector  which  constitutes  the  fundamental  unknown of the  simultaneous 

space-angle  solution. 

The  discrete  ordinates  approximation can also  be  applied  to  the  second- 

order  forms of the  transport  equation which are recognized as the  self-adjoint 

angular   f lux  (SAAF)4  and  the  even-odd  par i ty  (EOP)' equa t ions .   The  

fundamental  unknowns of the SAAF  equation  are  the  full-range  angular  flux 

while that of the  EOP equations  are  the  even-  and  odd-components of the  

angular  flux.  Nevertheless,  we  demonstrate that these  discrete,  second-order 

transport   equations  can  be  structured  into a unified  form  with  properly 

defined  matrix  components. This unified  formulation  not  only  allows  us  to 

derive  the  corresponding  finite-element  equations  in a generalized  fashion, 

but  also  mitigate  the  complexity in program  structure  to  accommodate  both 

the SAAF and  EOP  equations. 



2. Boltzmann Transport Equation 

The  vast  majority of numerical  transport  calculations  are  carried  out  by 

solving the linear  Boltzmann  equation in which the radiation  field of the  

problem  space is characterized by the  angular  flux  distribution over the  phase 

space of time,  position,  direction,  and  energy.  For  a  time-independent  problem 

with an external  source, this equation has the  form of’ 

= f C L n  
o,(r, Q‘ + Q, E’ + E ) y ( r ,  Q‘, E’)dSZ’dE’ + S(r, Q, E )  

where V is the  gradient  operator  in  the  Cartesian  geometry, and 

~ ( r ,  SZ, E )  = the  angular  flux of energyE at position r in the direction Q , 

o( r, E )  the macroscopic  cross  section  which  gives  the  probability of 
collision  per unit path  length, 

os( r,  Q’ --+ Q, E’ -+ E )  = the  differential  scattering  cross  section  where 

os( r ,  Q’ + Q, E’ + E ) d Q d E  gives the probability 

per unit path  length that particles at position r 
with  energy E’ in the direction Q’ scatter  into dE 
about E and  into a cone of direction dSZ about 51, 

S(r, Q, E )  = the  external  particle  source  distribution. 

In  this manuscript,  we  will  use  the  symbol V to  denote  the  spatial  domain 

which is bounded  by an external  boundary A. The  particle  direction  spans  the 

entire  solid  angle of 4n .  The  particle  energy is defined  within  a  range, 

The  appropriate  boundary  conditions  to  Eq. (1) are  usually  given  by 

specifying in that the  incoming  flux at an external  boundary: 

9 



where rb and rzb are  the  position  vector  and  outward  normal  on  the  external 

boundary,  respectively. 

Equation (1) is  often  referred  to  as  the  first-order  form of the  Boltzmann 

transport  equation.  Physically,  it   is  a  mathematical  statement of particle 

balance  over  a  differential  volume  in  the  phase  space of ( r ,  Q, E ) .  The first 

term on the  left of Eq. (1) represents  change  in  particle  angular  density  due  to 

the  motion of the  particles  in  a  straight  line  without  any  collisions  while  the 

second term  represents  the  rate of removal  due to collisions  with  matter.  The 

two  terms  on  the  right of Eq. (1) represent  the  particle  contribution  from 

collision and  external  source. 

Two  physical  quantities of interest  can  be  computed  directly  from  the 

angular flux.  The  scalar  flux  is  defined  as  the  angular  integral of the  angular 

flux: 

The  current  is  defined  as  the  angular  integral of the  angular  current: 

Integrating Eq. (1) over the  entire  angular,  energy  and  spatial  domain,  we 

obtain  the  global  balance  equation: 

JV JV V V 
V .  J ( r )dV+  o , ( r )@(r )dV  = J ( r )dA+/   o , ( r )$ ( r )dV  = I S(r)dV ( 5 )  

where $( Y )  , J ( r )  and S(  r )  are  the  integrals of the  scalar  flux,  current  and 

external  source  over  the  energy  range, o,(r) = o,(r)  - ox( Y) is the  particle 

absorption  cross  section. 

I 10 



2.1 Multigroup Legendre Approximation 

The  total  and  scattering  cross  sections  are  strongly  dependent on  material 

composition.  Furthermore,  they  are  complicated  functions in terms of particle 

energy  and  scattering  angle.  For  computational  purposes it is customary  to 

reduce  the  Boltzmann  transport  equation  to a more  manageable  form  before 

applying  any  numerical  methods.  Traditionally,  the  differential  scattering 

cross  section in Eq. (1) is expanded in terms of orthogonal  functions,  typically, 

the  Legendre  polynomials,’ P I ( p o ) ,  where po = SZ’ . SZ is the  cosine of the 

scattering  angle in the  laboratory  system. 

M 

The  scattering  moments  are  determined  from  the  orthogonal  property of 

the  Legendre  polynomials, 

1 

-1 
(J/(Y, E’ + E )  = 2n l  o,(r, po, E’ -+ E ) P I ( p O ) d p O .  

The  expansion in Eq. (6) is usually  truncated,  retaining 

(7) 

only as many 

terms as is consistent  with  the  level of approximation  being  applied  to  the 

angular  flux  and  with  the  severity of anisotropy  presented in the  differential 

cross  sections. This is known as the  PL approximation.  For  neutron  and 

photon  t ransport ,   only  the  f i rs t   few  terms in the  series are   required  to  

accurately  model the scattering  process.  For  electron  transport,  higher  order 

of expansions  are  required  to  adequately  model  the  forward-peak  scattering. 

Substituting  Eq. (6) into  Eq. (l), the  scattering  source  term becomes 



Q,(r,  5 2 ,  E )  = TI o,(r, Q’ -+ Q. E’ -+ E ) v ( r ,  SZ’, E’)dQ’dE’ 
0 4.n 

L 

= -JwJ o,(r, E’ -+ E ) P , ( p o ) v ( r ,  Q’, E’)dQ’dE’ 31+ 1 
4n: 0 4x 

l = O  
L l  

where  we  have  applied  the  addition  theorem of spherical  harmonics,  and 

Y,,(Q) is the  spherical  harmonics  and Y;m(L2’) is its complex  conjugate, as 

described in Appendix A. 

T h e   n e x t   s t e p  is to   d iv ide   the   energy   range  of interest ,  that  is, 

Emin 5 E I E,,, , into a finite  number, G, of intervals.  Each  energy  interval is 

called  a  group  which is bounded  by  the  energy  values E,, a n d  E,. The 

particles in group  g  are  taken  to  be  those  with  energies  between E ,  + and E,. 

The  group  angular  flux is defined by 

Furthermore, the integral  over the entire  energy  range is represented by 

With   these   def in i t ions ,   the   cont inuous-energy   form of Eq. (1) can   be  

approximated by the  multigroup  transport  equations: 

for g = 1, G ,  where  o p ( r )  is the  group-averaged  total   cross   sect ion  and 

olg , , ( r )  is the   g roup- to -g roup   s ca t t e r ing   moment .  These mul t ig roup  
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parameters  have  to  be  evaluated  with  the  detailed  energy  dependence of the 

cross   sect ion  data   and  the  spectral   weight ing  funct ions  to   accurately 

characterize  the  system  under  consideration. 

The  multigroup  approximation  effectively  converts  the  continuous-energy 

transport  equation  to a set  of simultaneous  equations  for the discrete  energy 

groups. In practice  one  will  solve  these  equations  successively as a sequence of 

one-group  problems  in   which  the  contr ibut ions  f rom  other   groups  are  

combined  with  the  external  source Sy(r, Q) to  be  treated as an  inhomogeneous 

source  term: 

Thus, the multigroup  transport  equation becomes 

It is noted  the  second  term  on  the  left  accounts  for  removal of particles  from 

collisions  while  the first term  on  the  r ight  represents  contribution  from 

scattering in which  particles  change  their  directions of motion but  remain in 

the  same  energy  group.  The  difference of these  two  terms is the  net  removal of 

particles  from an energy  group.  For  this  reason,  we  can  define  a  removal 

operator 

and  express  Eq. (13) in a simple  form 
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Conventionally,  the  scattering terms in  Eq. (13) are  evaluated in terms of 

the  angular  moments.  As shown  in  Appendix A, the  spherical   harmonics 

satisfy  the  following  relationship: 

where  YFm(s2) a n d  Y f , ( Q )  are   the   cos ine-   and   s ine-components  of t h e  

spherical  harmonics,  respectively. This allows us to  rewrite  Eq. (13) as 

L 

/ = 0  m = O  

where  the  angular  moments  are  defined  by 

The  group-to-group  scattering  source  can  be  evaluated  accordingly as 

From this point  forward,  we  will  omit  the  subscript g in the  multigroup 

transport  equation (17) with  the  notion that this equation  will  be  solved  group 

by  group.  Hence,  we  will  concentrate  on  the  one-group  transport  equation in 

the form of 

14 



with 

In  two-dimensional  Cartesian  geometry,  the  angular  flux  is  independent of 

the  z-coordinate  and  has  mirror  symmetry  about  the x-y  plane. If a  direction 

Q is represented by a  polar  angle e(=  COS-'^) measured  from  the  positive z- 

axis  and  an  azimuthal  angle cp measured  from  the  positive  x-axis  (see  Figure 

A-l),  we  can  express  this  symmetry  condition as 

Hence,  we  only  need t o  cons ider   the   angular   f lux   over   ha l f  of t h e  

direct ions,  0 5 p 2 1 and  0 2 cp 5271. Using  the  following  property of t h e  

associated  Legendre  polynomial 

it can be  shown that  those  terms  with odd I + rn vanish  from  the  within-group 

scattering  integral.  The  values of rn in  the  summation  are  restricted to even 

l + r n :  



l = O  ??I = 0 - 
even / + m 

and  the  angular  moments  are  evaluated  over half of the  angular  domain 

2.2 Discrete  Ordinates Approximation 

In  this section,  we  will  briefly  discuss the classical  Discrete  Ordinates 

(SN) method  commonly  used  to  approximate  the  angular  dependence in the 

multigroup  transport  equation. In this  approach,  the  angular  variable 52 is 

discretized  into  a  number of directions  (angles)  and  the  transport  equation is 

then  derived  for  each  direction.  The  integral  over  direction,  which  describes 

the  direction-to-direction  transfer, is replaced  by a corresponding  quadrature 

integration: 

tI = 1 

where B, a n d  w, is the  n t h  pair  of direction  and  weight,  respectively. 

Furthermore, it is assumed that f ( Q )  is constant  within an angular  bin AB, 

about B, . Selection of the  value of N, hence  the  number of directions,  depends 

on  the  required  degree of accuracy.  For a truncated  cross-section  expansion, 

the  number of directions is often  chosen so that the  angular  moments  and  the 

scattering  source  can  be  evaluated  as  accurately  as  possible.  In  the  case of a 

S N P L  approximation,  the  corresponding  number of directions ( N d )  a n d  

angular  moments (N,)  are given in Table 1 with  conventional choice of even 

value of N and odd value of L. 
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Table 1. Number  of  Discrete  Directions ( N d )  and  Angular 
Moments (N,) for  the  Angular Flux with  a  Standard SNPL 

Approximation. 

Dimensionality 

L N 1 

N m  N d  

2 N 1 - ( N  + 2) 
2 2 

- ( L  + 1 ) ( L  + 2 )  

3 ( L  + 1)2 N ( N  + 2 )  

Using  the  quadrature  formula,  the  angular  moments  given  in  Eq. (18) can 

be  evaluated by 

where tyn(r) = ~ ( r ,  Q,) and  is  assumed to be constant  within  an  incremental 

angular  range  about Q,l. We can  then  define  a  discrete-to-moment  matrix 

which  maps  the  discrete  angular  flux to the  angular  moments: 

where 

3 
$ = a  column  vector of size N m  containing  the  angular  moments, 

w = a  column  vector of size N ,  containing  the  discrete  angular  flux 3 

r 

and 

17 



[Dl  = the  discrete-to-moment  matrix of size N ,  x N ,  

As shown  in  Appendix B, it is  possible  to  arrange  the  angular  moments in 

an orderly  vector  and  assign  a  unique  index k to  a  specified  moment. This 

allows us  to  define  the  components  in  the  discrete-to-moment  matrix  by 

D,, = wnYf,(Qn) or w,Y;,(Q,) for 1 5 k 5 N ,  and 1 5 IZ 5 N,, (30) 

where k is determined  by a pair of I and m . 

The  discrete  form of the multigroup  transport  equation  can  be  obtained  by 

integrating  Eq. (17) over an incremental  range  about  the  direction Q,: 

for 1 5 n 5 N,. Combining  the last equations  for all directions  and  arranging 

these  results in a matrix  form  lead  to a compact  expression  for  the  discrete- 

ordinates  approximation: 

where $ and Q are vectors  containing the angular  f lux  and  the  external 

source,  respectively.  The  matrix [A] is  a diagonal  matrix  consisting of the 

streaming  operator  along  the  discrete  directions 

+ 

r 1 

[A] = diag A , A 2 . .  . ANA,  1 (33) 

where A,f = wnQn . Of. The  removal  matrix [ R ]  is a square  matrix  and has 

the  form of: 

18 



where o = o ( r )  , 

[ W ]  = a Nd x Nd diagonal  matrix = diag w, w 2  . . . w [ N d  1 ’ 
[X] = a N ,  x N ,  diagonal  matrix = diag [oo(r) o , ( r )  ... o L ( r i  , 

[MI = the  moment-to-discrete  matrix of size N d  x N ,  , 

with M,, = Y:,(Q,) or Y;,(Qn) for 1 5 k h N ,  and 1 h n I N , ,  and  [Dl is the 

discrete-to-moment  matrix  as  defined in Eq. (30). 

The  matr ix  [R] is simply a discrete  representation of the  operator R 

given in Eq. (22). The  scattering  matrix [SI = [ M ] [ C ] [ D ]  comprises of three 

components  and  represents the discrete  form of the  within-group  scattering 

integral in Eq. (17). In other  words, it defines a mapping  between the discrete 

angular  flux  and the discrete  scattering  source. It is interesting  to  note that 

the matrices [ W ]  [SI and [R] are symmetric for  any  standard  quadrature  sets. 

These  result  directly  from  the  assumption that the  scattering  kernel  depends 

only  on  the  direction  cosine  between  two  scattering  angles. In addition,  the 

discrete-to-moment  and  moment-to-discrete  matrices  satisfy  the  relationship 

Furthermore,  the  matrix [E] depends  on  the  indexing  scheme in which 

the angular  moments  are  ordered.  For  example,  for  a  three-dimensional P3 

approximation,  the  moment  vector is arranged as 

and  the  corresponding  scattering  cross-section  matrix is given by 
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2.3 G alerkin Quadrature Method 

In the last section,  we  outlined  the  procedure  to  construct  the  scattering 

matrix in terms of the  moment-to-discrete  and  discrete-to-moment  matrices 

with  the  s tandard SN method in which  a  set of directions  and  weights is 

specified.  An  alternative  approach  was  proposed  by  Morel5  to  compose  the 

scattering  matrix  based  the  Galerkin  finite-element  method,  while  the  rest of 

transport  equation is treated by the  standard SN method. In this approach, 

the   angular   f lux  is first   represented  by  a  set  of interpolation  functions 

(spherical   harmonics).   The  matrices [MI  and  [Dl  are   then   ob ta ined   by  

r equ i r ing   t ha t   t he   d i sc re t e   s ca t t e r ing   sou rce   f rom  the   i n t e rpo la to ry  

representation  provides  the  same  angular  moments as the  scattering  source 

calculated  with the interpolatory  representation of the  angular  flux.  This 

requirement  translates  into  the  relationship: 

[Dl  = (36)  

and  implies that one  need  only  to  invert  the  moment-to-discrete  matrix  to 

obtain  the  discrete-to-moment  matrix. 

For  multi-dimensional  geometries,   the  number of directions in t h e  

standard SN quadrature  set is greater than the  number of moments  to  expand 

the P N m l  scattering  source.  Thus, it is necessary  to  incorporate  higher-order 

angular  moments  (with L < I )  to  make [ M I  square  and  invertible. A suitable 

recipe  suggested  by  Morel is summarized  in  Table 2 where  the  components of 

the  matr ix  [MI  and  the   ranges  of I and  rn are  given  for  two-  and  three- 

dimensional  geometries. 

The  scattering  matrix  produced  by the Galerkin  quadrature  method  may 

not  be  symmetric  but this method  offers  two  distinctive  advantages  over  the 

standard SN quadrature. First, a  delta-function  scattering is treated  exactly 

with  the  Galerkin  scat ter ing  matr ix   due  to  the requirement of Eq. (36). 

Conver se ly ,   t he   s t anda rd   quadra tu re   s e t   o f t en   p roduces  an uns t ab le  
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scattering  matrix.  Second,  the  extra  angular  moments  needed  to  make [MI  a 

square  matrix  also  make it possible  to  use  the  higher-order  cross-section 

moments  (see  Table 2) moments in computing  the  scattering  source. This may 

lead  to a more  accurate  solution if the  angular  flux  and  cross  section  are 

highly  anisotropic. 

Table 2. Subsets of  Spherical  Harmonics  Used  to  Construct  the 
Moment-to-Discrete  Matrix  for  the  Angular  Flux. 

I Two-Dimensional  Geometry 

~ ~~~~ 

Three-Dimensional Geometry 

1. The  symbol  [a, b] indicates  the  index  ranges from a to  b  with the 

2. The  shaded  entries  are  the  additional  spherical  harmonics  to  make 
footnote  indicating  the  restricted  values. 

the  moment-to-discrete  matrix  invertible. 
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3. Self-Adjoint Angular Flux Equation 

The  self-adjoint  angular  flux (SAAF) equation has recently  been  brought 

into  attention  as a basis for  numerical  transport  method^.^ In this section,  we 

will first derive  the SAAF equation  by  manipulating  the  Boltzmann  transport 

equat ion   and   formal ly   inver t ing   the   removal   opera tor .   The  result is a 

differential-integral  equation  for  the  angular flux but  containing a second-order 

d i f f e ren t i a l   ope ra to r   i n   space .   We   t hen   app ly   t he   d i sc re t e   o rd ina te s  

approximation  and  structure  the  discrete  equations  into  a  matrix  form. 

3.1 Derivation 

The SAAF equation  can  be  derived  symbolically in two  steps. First, we  solve 

y ( r ,  5 2 )  from  Eq. (20) 

~ ( r ,  5 2 )  = R-'[Q(r,  52) - 52. Vy(r, 52) 1 (37) 

and  then  substitute  the result into  the  streaming  operator in Eq. (20): 

As shown in Appendix C, the second-order  transport  operator  as  defined by 

along  with  the  operators R and R-' are  symmetric  (self-adjoint)  and  positive 

definite (SPD). This  allows us to  apply  the  Galerkin  finite  element  method  to 

treat the  spatial  dependence  and  obtain  the  same  system of equations as in the 

Rayleigh-Ritz  method  which  exhibits  the SPD properties. 

23 





There  are  several  characteristics of the SAAF equation  worth  noting. First, 

the  unknown in  the SAAF  equation  is still the  angular  flux  over  the  entire 

angular  domain.  The  vacuum  and  reflective  boundary  conditions  for  the 

incoming  directions of the first-order  transport  equation  can  be  applied  with  no 

alteration.  However, as shown in Eq. (38), the SAAF equation  contains  second- 

order  spatial  derivatives  and  thus  requires  additional  boundary  conditions  to 

properly  formulate  the  problem.  One  stipulation is to  require the angular flux 

in the  outgoing  directions  to  satisfy  the  first-order  transport  equation at the 

boundary: 

Second, the previous  derivation of the  SAAF  equation  breaks  down  when 

applying it to a void  region  due  to  the  presence of the  total  cross  section  in  the 

denominator of the  inverse  removal  operator.  One  possible  remedy4 is to start 

with  the SAAF equation  for a purely  absorbing  medium  with  uniform  cross 

section: 

Multiplying  the last expression  by 0, and  taking  the  limit as 0, -+ 0 , we  obtain 

the SAAF equation  for a void region: 

3.2 Discrete  Ordinates Approximation 

The  discrete SAAF equation  can  be  obtained  by  integrating  Eq. (38) over an 

incremental  range in the  directional  space  and  collecting  terms: 
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where $ and  Q are  vectors  containing  the  discrete  angular  f lux  and  the 

extraneous  source,  respectively.  The  streaming  matrix [A] , the  removal  matrix 

[ R ]  and  the  diagonal  matrix [ W ]  are  previously  defined in Section 2.2. The 

matrix [ E ]  has  the  same  form as the  removal  matrix  and is defined as 

+ 

[E] = - [ [ w1-' + [MI  [%I [Dl [wl-l] 
1 
0 

(45) 

where [MI a n d  [Dl  are   the   moment- to-d iscre te   and   d i scre te - to-moment  

matrices.  and 

[%I = a N ,  X N ,  diagonal  mat.rix 
r 1 

We can  make  two  observations  about  the  matrix [ E ] .  First, like [ R ]  , the 

matrix [ E ]  is symmetric  for  any  standard  quadrature sets but  asymmetric  for 

the  Galerkin  quadrature  method. It is not  obvious  that  there is an'effortless 

way  to  symmetrize  these  matrices [ R ]  and [ E ]  for the latter  case. 

Second, it is noted that the  operators X and R-' given in Eqs. (22) and (42) 

satisfy  the following condition 

which  can  be  easily  verified  by  applying  the  following  orthonormal  properties of 

the  spherical  harmonics: 
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On the contrary,  the  matrix [ k ]  is the  exact  inverse of [ R ]  if and only if the 

product of [ M I  a n d  [Dl  is an  ident i ty   matr ix .  This condition  may  not  be 

satisfied  by  the  matrices [MI and [Dl  generated  from  a  standard  quadrature 

set  since  the  standard  quadrature set does  not  guarantee  to  integrate Eqs. (47- 

48) exactly  for  any  given  orders of I a n d  rn. However, this condition is 

guaranteed by the  Galerkin  scattering  matrices as stated in Section 2.3. 
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4. Even-Odd Parity  Equations 

The  even-  and  odd-parity (EOP) equations  have  been  employed  for  a  wide 

variety of numerical  transport codes,’ especially in the  applications of the 

continuous  f inite  element  methods in nuclear   reactor   analysis .  In t h e  

following  sections,  we  will  present  the  derivation of the EOP equations  by 

following a standard  procedure.  The  results  are  two  differential-integral 

equations  similar  to  the SAAF equation,  but  are  for the even-  and  odd- 

components of the   angular   f lux .   We  then   apply   the   d i scre te   o rd ina tes  

approximation  and  package  the  discrete  equations  into a matrix  form. 

4.1 Derivation 

We start  with  the  one-group  transport  equation expressec 

Q . W(r7 Q) + o ( r ) v ( r ,  Q) 

d in the form of 

and  decompose  the  angular  flux  into  the  even-(symmetric)  and  odd-parity 

(asymmetric)  components as 

v(r, Q) = ve(C Q) + $(r ,  Q) > 

where  the  even-parity  angular  flux is defined  by 

and  the  odd-parity  angular  flux is defined  by 
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yo@, Q) = ., w ( r .  Q) +(r,  -Q) . 
I '[ 1 

Since  Eq. (49) holds  for -Q we have 

-Q . Vyf(r ,  -Q) + o(r )y f ( r ,  -Q) 
L 

21+ 1 
= r o l ( r ) /  P1(-Q . Q')yJ(r, Q')dQ' + Q(r,  4 )  

4n 
1 = 0  

Adding  Eqs. (49) and (53) and  utilizing  Eqs. (51) and (52) lead  to 

L 
= - 1 -ol(r)/4n 21+1 Cp,(Q . Q') + PJ-Q ' Q') y ( r ,  Q')dQ' + Qe(r,  Q) 

2 47T 1 (54) 
1 = 0  

21+ 1 

even I 4n 

where 

It is noted that the  terms  with  odd  values of 1 in the  summation  vanish as 

results of P l ( - Q .  Q') = (-1) P l ( Q .  Q'). 
1 

Subtracting Eq. (53)  from (49) yields 

Q . V$(r,  Q) + o(r)ly"(r, Q) 

where 
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Analogous to  the   Bol tzmann  t ranspor t   equa t ion ,   we   can   def ine   the  

removal  operators for the  even-  and  odd-parity  angular  flux: 

21+ 1 

even 1 4n 

I 

odd I m = 1 

The  angular  moments for the  parity  flux  are 

where  the  symbol a E { e ,  o }  is  used to  distinguish  the  even- or odd-parity 

angular  flux  and  the  symbol p E {c ,  s> is used to denote  the  cosine-  or  sine- 

moment.  With  the  removal  operators  defined, we can  rewrite Eqs. (54) and 

(55) as  
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Solving y"(r, Q) from  Eq. (60) 

W"(r, Q) = R;[Q'(r, a )  - Q . Vwe(r,  Q) 1 
and  substituting  the  result  into  the  streaming  operator  in Eq. (59), we  obtain 

the  even-parity 

One  can  repeat 

equation: 

' Vwe(r ,  Q)] + R e y e ( r ,  Q) = 

this  process  and  obtain  the 

- Q . V RL'Q . V y e ( r ,  Q)] + Roy" ( r ,  sl) = [ 

Qe(r,  Q) - Q . V[R: Qo(r, Q)] . (62) 

odd-parity  equation 

Qo(r ,  Q) - Q . V[R,' Qe(r,  Q)]. (63) 

The EOP equations,  Eqs. (62-63), have  the  same  basic  form  as  the  SAAF 

equation.  Consequently,  we  can  derive  the  functional  form of the  inverse 

operators  by  following  the  same  procedure  used  in  deriving  the SAAF 

equation. 

Finally,  the  transport  operators for the  even-  and  odd-parity  angular flux 

are defined  as: 
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As shown in Reference 3, these  operators  are  symmetric  and  positive  definite. 

Proofs of these  properties  are  similar  to  those for the SAAF equation  and will 

not  be  duplicated  here.  We  also  stress  the  similarity  between  the  EOP 

equations:  they  have  the  same  structure  except that the limits  on  summation 

are different.  For this reason,  we  will  express the EOP equations in a common 

form in the  following  sections  except  for  the  instance  where  we  have  to 

distinguish  the  even-  or  odd-parity  angular  flux. 

The  corresponding  vacuum  boundary  conditions  for  the  even-  and  odd- 

parity  flux  can  be  deduced  from that for the  Boltzmann  transport  equation. 

Since  the EOP equations  are  second-order in space,  both the incoming  and 

outgoing  parity  flux  are  specified  to  provide  proper  number of conditions. 

Consider  the  boundary  conditions  where  the  incoming  angular  flux  are 

specified: 

where rb and nb are  the  position  vector  and  outward  normal  on  the  external 

boundary,  respectively.  Following  the  decomposition  given in Eq. (50), the 

condition  on  the  incoming  flux  can  be  expressed as 

and it also  holds  for -52 
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Utilizing  the  result in Eq. (61) to  eliminate  the  odd-parity  flux  from the 

last two  equations,  we  have  the  boundary  conditions  for  the  even-parity  flux 

Similarly,  the  boundary  conditions  for  the  odd-parity  flux  are 

4.2 Symmetry Conditions 

The  even-  and  odd-parity  flux  defined  in  Eqs. (51) and (52) are  symmetric 

and  asymmetric in SZ, respectively.  These  conditions  allow us to  model  the 

angular  f lux  only  over half of the   angular   domain .  If a  direction 52 is 

represented  by a polar  angle e(=  COS-'^) measured  from the positive  z-axis 

and  an  azimuthal  angle cp measured  from  the  positive  x-axis,  we  can  express 

these  conditions as 

for -1 5 p 5 1 and 0 I cp 5 7t . Furthermore,  the  spherical  harmonics  satisfy  the 

following relationships, 
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since 

Using  these  identities, we can  reduce  the  range of the  integration from 4n to 

271 in  all  the  integrals over i2 . Consequently,  the  angular  moments  become 

For  two-dimensional  Cartesian  geometry,  the  parity  flux  have  mirror 

symmetry  about  the x-y plane.  That  is,  the  parity  flux  are  symmetric  in p . We 

have two additional  conditions  on  the  even-  and  odd-parity  flux 

v"(r7 -F, cp) = v"(r, P7 0 )  7 (80) 

for 0 5 p 5 1 . The  removal  operators  defined in Eqs. (56) and (57) become 

even 1 m = O  
even m 

odd m 
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with 

4)lm ( r )  = I, y!n l (Q)va(c  W d Q  7 

aB 

and  the  limits of the  summation  are  restricted to  even I + m . 

4.3 Discrete Ordinates Approximation 

As stated  in  the  last  section, we only need to consider  the  parity  flux  over 

half of the   angular   range   due  to  the  symmetry  conditions.   Hence,  when 

applying  the  discrete  ordinates  method,  the  number of discrete  directions 

employed  in  the EOP equations  is half of that  for the  angular  flux.  In  the  case 

of a  standard SNPL approximation,  the  corresponding  number of directions 

( N d )  and  angular  moments (N:  and N:) are  given  in  Table 3 where it is 

assumed  that N is  even  and L is  odd. It is  also  noted  that  there  are - ( L  + 1) 

less  angular  moments for the  odd-parity  flux  since  all  moments  with m = 0 

vanish  due to the  symmetry  conditions. 

1 
2 

Table 3. Number  of  Discrete  Directions  and  Angular  Moments  for 
the EOP Equations  with  a  Standard SNPL Approximation. 

Dimensionality N d  Nfn 

1 1 -N L L 
2 

1 1 
4 - N ( N  + 2) 

4 
1 1 1 
2 2 

2 ; (L 1 + 1)’ - ( L  + 1)(L + 3) 

3 - N ( N  + 2) - ( L  + 1)(L + 2) ?L(L + 1) 

Using  the  quadrature  formula,  the  angular  moments  given  in Eq. (83) can  be 

evaluated by 
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n = l  

where ~ , “ ( r )  = ya(r ,  SZ,) is assumed  to  be  constant  within an incremental 

range  about  SZn . Again,  the  let ters,  a E { e ,  o }  and  fl E {c ,  s }  , are   used  to  

denote  the  angular  moments of the  parity flux.  Similar  to  the  angular  flux, we 

can  then  define  two  discrete-to-moment  matrices  which  map  the  discrete 

parity  flux  to  the  angular  moments: 

where 

3 
= column  vectors  containing the  even-  or  odd-  parity  angular  moments, 

and 

+ w, = column  vectors  containing the discrete  even-  or  odd-parity  flux. 

For a standard  quadrature set, the components in the  discrete-to-moment 

matrices  have  the  form of 

where  k is a function of I a n d  r n ,  a n d  its value  depends  on  how @a is 

organized.  For  the  Galerkin  quadrature  method, [D,] is the  inverse of the 

moment-to-discrete  matrix [M,] ,  which  will  be  defined  next. 

3 

The  discrete EOP equations  can  be  arranged  in  the  following  form: 
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+ + 
where Q, and Q, are vectors  containing  the  discrete  extraneous  source  for  the 

even-   and  odd-pari ty   f lux,   respect ively.   The  s t reaming  matr ix  [A] is 

previously  defined in Section 2.2. The matrices [R,] and [E,] are  defined as 

where 

[X,] = a N i  x N z  diagonal  matrix  containing the scattering  cross  sections 

[%,I = a N ,  X A': diagonal  matrix a 

r 

and M t k  = Y;,(Q,) or Y;,(Q,) for 1 I k 5 N:, 1 I n I N ,  . Subsets of spherical 

harmonics  selected  to  construct the moment-to-discrete  matrices  are  given in 

Table 4 for  two-  and  three-dimensional  geometries.  The  shaded  entries  are  the 

additional  spherical   harmonics  to  make the moment-to-discrete  matrix 

invertible. 

1 



Table 4. Subsets of Spherical  Harmonics  Used  to  Construct  the 
Moment-to-Discrete  Matrix  for  the EOP Equation. 

Two-Dimensional  Geometry 

Even-Parity Flux I Odd-Parity Flux 

Even-Parity Flux I Odd-Parity Flux 

* The  symbol  [a, b] indicates  the  index  ranges from a to  b  with  the 
footnote  indicating  the  restricted  values. 
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5. Summary 

We have  applied  the  discrete  ordinates  approximation  to  the  second-order 

transport  equations  and  demonstrated  that  they  can  be  cast  into a unified 

form  with  properly  defined  matrix  operators.  This  common  representation  can 

be  applied  to  either  the SAAF equation  or  the EOP equations.  The 

components of these  matrix  operators  are  itemized in detail  for  both  the 

standard  quadrature  set  and  the  Galerkin  quadrature  method.  Finally,  these 

formulations  allow us to  derive  and  program  the  corresponding  finite-element 

equations in a common setting  which  are  the  foundations of the  CEPTRE 

code. 
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Appendix A. Properties of Spherical Harmonics 

The  normalized  spherical  harmonics, Ylm(SZ) ,  are  defined by 

for 1 = 0..  .= and m = -1, I ,  where 52 is an  unit vector represented by  a  polar 

angle 8 and  an  azimuthal  angle cp as  shown in  Figure A-1, 

and Py(p) is  the  associated  Legendre  function of order I and  degree m . 

The  spherical  harmonics  are  orthonormal  in  that 

* 
where Y,,(p, cp) is the complex  conjugate of Ylm( p, cp) , and 

The  spherical  harmonics  satisfy  the  important addition  theorem. Consider 

two vectors, SZ and SZ’ , which  have the  coordinates (p, cp) and (p’, cp’) . Let 8, 

be the  angle  between  the  vectors SZ and SZ’, then 

p, = SZ . SZ’ = cos 8, = cos 8 cos 8’ + sin 8 sin @’cos (cp - cp’) . 

The  addition  theorem  states  that 

(A- 5 1 

rn = -1 
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Appendix C. Symmetry and  Positive  Definiteness of the 
Transport Operators 

In this appendix,  we  will  show that the  operators R , X-', and Ts defined 

in Section 3 for the SAAF equation are symmetric  and  positive  definite. An 

operator L is symmetric if 

( V , W  = ( L v , u ) ,  

and is strictly  positive  definite if 

for all non-zero  functions u and v . The symbol (u ,  v) denotes  the  inner 

product  between  two  functions: 

Furthermore, the following  boundary  conditions are imposed  on  the 

functions  under  consideration: 

where t-6 and nb are  the  position  vector  and  outward  normal  on the external 

boundary,  respectively. 

C . l  Removal Operator 

The  removal  operator R in the  one-group  transport  equation is defined  in 

Eq. (22) and  can  be  written as 
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where  the  scattering  cross  section  only  depends  on  the  cosine of the scattering 

angle  between  the  incoming  and  outgoing  directions.  The  removal  operator R 

can  be  shown to  be  symmetric  by  substituting  the last equation  into  Eq. (C-1): 

(C-7) 

where  we  obtain the second  expression  by  interchanging  the  variables and 

order of integration  over  angles. 

The  positive  definite  condition follows  from an  application of the  Cauchy- 

Schwartz  inequality: 

-1 J’ J‘ , , / m ) u ( r ,  Q ) , , / m u ( r ,  Q’)dQ’dQdV v 471 4rl 



Interchanging  the  variables  and  order of integration in the  first  square  root 

leads  to 

and 

(C-10) 

This inequality is justified if the total  cross  section is greater  than  the  scat- 

tering  cross  section.  Hence  the  removal  operator is symmetric  and  positive 

definite. 

C.2 Inverse Removal Operator 

The inverse  removal  operator R In the SAAF equation is given in Eq. -1 . 

(42) and  can  be  written as 

(C-11) 

where 

(C-12) 

Comparing Eq. (C-11)  with (C-6), it can  be  readily  shown that the  operator 

R-’ is symmetric. To prove  positive  definiteness,  consider a function u = R w  

and 

(u, R-lu)  = (Rw, w) > 0 .  (C-13) 

Hence  the  inverse  removal  operator is also  symmetric  and  positive  definite. 



C.3 Second-Order Transport Operator 

The  transport  operator  in  the SAAF equation is defined as 

Tsu(r ,  Q) = - Q ' V R- 'Q.  Vu(r ,  Q) + R u ( r ,  Q). 1 ((2-14) 

Applying the  identity 

v(r, Q)Q. Vu(r ,  Q) = V . [ Q v ( r ,  Q ) u ( r ,  Q)] - u(r ,  Q)Q. Vv(r ,  Q). ((2-15) 

and  the  divergence  theorem, we have 

. 



where  we  have  made  use of the  boundary  conditions  given  in Eqs. (C-3) and 

(C-4). To prove the positive  definite  condition, we can  manipulate  the  interme- 

diate  results given in Eq. (C-16): 

which is always  positive  since  both R and R-' are positive  definite  and  the 

surface  integral  is  also  positive. 
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